Sulforaphane Represses Matrix-Degrading Proteases and Protects Cartilage From Destruction In Vitro and In Vivo
نویسندگان
چکیده
OBJECTIVE Sulforaphane (SFN) has been reported to regulate signaling pathways relevant to chronic diseases. The aim of this study was to investigate the impact of SFN treatment on signaling pathways in chondrocytes and to determine whether sulforaphane could block cartilage destruction in osteoarthritis. METHODS Gene expression, histone acetylation, and signaling of the transcription factors NF-E2-related factor 2 (Nrf2) and NF-κB were examined in vitro. The bovine nasal cartilage explant model and the destabilization of the medial meniscus (DMM) model of osteoarthritis in the mouse were used to assess chondroprotection at the tissue and whole-animal levels. RESULTS SFN inhibited cytokine-induced metalloproteinase expression in primary human articular chondrocytes and in fibroblast-like synovial cells. SFN acted independently of Nrf2 and histone deacetylase activity to regulate metalloproteinase expression in human articular chondrocytes but did mediate prolonged activation of JNK and p38 MAPK. SFN attenuated NF-κB signaling at least through inhibition of DNA binding in human articular chondrocytes, with decreased expression of several NF-κB-dependent genes. Compared with cytokines alone, SFN (10 μM) abrogated cytokine-induced destruction of bovine nasal cartilage at both the proteoglycan and collagen breakdown levels. An SFN-rich diet (3 μmoles/day SFN versus control chow) decreased the arthritis score in the DMM model of osteoarthritis in the mouse, with a concurrent block of early DMM-induced gene expression changes. CONCLUSION SFN inhibits the expression of key metalloproteinases implicated in osteoarthritis, independently of Nrf2, and blocks inflammation at the level of NF-κB to protect against cartilage destruction in vitro and in vivo.
منابع مشابه
In vitro model for the analysis of synovial fibroblast-mediated degradation of intact cartilage
INTRODUCTION Activated synovial fibroblasts are thought to play a major role in the destruction of cartilage in chronic, inflammatory rheumatoid arthritis (RA). However, profound insight into the pathogenic mechanisms and the impact of synovial fibroblasts in the initial early stages of cartilage destruction is limited. Hence, the present study sought to establish a standardised in vitro model ...
متن کاملProtective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro
Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...
متن کاملSecretion of an articular cartilage proteoglycan-degrading enzyme activity by murine T lymphocytes in vitro.
Destruction of articular cartilage is the hallmark of inflammatory arthritides. Enzymes elaborated by mononuclear cells infiltrating the synovium mediate, in part, the degradation of the cartilage extracellular matrix. Since mononuclear cells are the dominant cell type found in chronic inflammatory synovitis, we investigated whether interaction of immune mononuclear cells with antigen initiated...
متن کاملStable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis
Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone archite...
متن کاملRole of Cysteine Cathepsins in Joint Inflammation and Destruction in Human Rheumatoid Arthritis and Associated Animal Models
Destruction of bone and articular cartilage during pathogenesis of rheumatoid arthritis (RA) is caused by increased activity of a huge panel of proteases, which are secreted by several cell types of arthritic joint. Besides matrix metalloproteases (MMPs), the papain-like cysteine proteases (clan CA, family C1) have been identified as proteases potentially involved in car‐ tilage and bone destru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 65 شماره
صفحات -
تاریخ انتشار 2013